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Abstract
We consider the scattering theory for the Schrödinger operator −D2

x + V (x)

on the graphs made of one-dimensional wires connected to external leads.
We derive two expressions for the scattering matrix on arbitrary graphs. One
involves matrices that couple arcs (oriented bonds), the other involves matrices
that couple vertices. We discuss a simple way to tune the coupling between
the graph and the leads. The efficiency of the formalism is demonstrated with
a few known examples.

PACS numbers: 03.65.Nk, 72.10.Bg, 73.23.−b

1. Introduction

The study of graphs is a vast domain. Spectral theory of the Laplacian on graphs has been
widely studied in the mathematical literature [1–4]. Here we are interested in the graphs
made of one-dimensional wires identified with finite interval of R and connected at vertices.
A trace formula for the partition function of the Laplace operator on such graphs has been
derived in a very nice work by Roth [5, 6] who expressed the partition function in terms of
the contributions of periodic orbits. The study of the Laplace operator on graphs has been
shown to be relevant in many physical situations. It has been first considered for the study of
organic molecules [7]. It has also some interest in the context of superconducting networks [8],
for the study of adiabatic quantum transport in networks [9, 10] and in the weak localization
theory [11–15]. More precisely, several physical quantities of weak localization theory are
related to the spectral determinant of the Laplace operator S(γ ) = det(−D2

x + γ ), which can
be expressed in terms of the determinant of a V × V -matrix M coupling the vertices [14].
The relation between S(γ ) and the trace formula obtained by Roth has been examined in [16].
Graphs have also been a subject of several studies in the context of quantum chaos for their
spectral properties [17–20] and also their scattering properties when they are connected to
leads [21]. Scattering theory on graphs has been studied in [22] and is also frequently used in
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the context of transport theory for mesoscopic networks (e.g. [23–26]; more recently graphs
were considered [27] to describe mesoscopic 2D normal metal networks and superconducting
networks realized experimentally to reveal the so-called Aharonov–Bohm cage effect [28, 29].
In order to describe disordered networks, for example, to understand how the Aharonov–Bohm
cage effect is affected by disorder, it is important to have a simple and efficient formalism
which incorporates a potential on the bonds.

In this paper we consider the scattering theory for a graph on the bonds of which lives
a potential V (x) and connected to external leads from which some wave is injected. Some
spectral properties of the Schrödinger operator on graphs have already been studied in [30].
More recently, Desbois generalized the expression of the spectral determinant of the Laplace
operator [14] in two ways: in the first step, he considered the case of the Schrödinger operator
with a continuity condition of the wave function at the vertices [31, 32]. In the second step
[33], he studied the case of the Schrödinger operator with general boundary conditions at the
vertices and gave the corresponding expression for the spectral determinant. The scattering
problem for graphs with potential has already attracted the attention of several authors
(see [34–36] where other references are given). The aim of our study is to provide a general
and systematic framework to construct the scattering matrix of a given graph in terms of
matrices encoding the information on the topology and the potential on the graph.

This paper is organized as follows: in the next section we introduce the basic definitions.
In section 3 we derive an expression of the scattering matrix of the graph in terms of arc
matrices (24). In section 4 we take a different point of view and express the scattering matrix
in terms of vertex matrices (43) and (48). Our results generalize the formulae known for
the Schrödinger operator −D2

x in the absence of scattering by the bonds [10, 18]. We see
that the second formulation of the scattering matrix with vertex matrices offers the advantage
of compactness compared to the arc matrix formulation. We discuss, in section 5, simple
modifications of the formalism to introduce tunable couplings between the leads and the graph
in the most efficient way. Simple examples are developed.

2. Position of the problem

We first define the problem and recall the notations chosen in [16, 31]. We consider the
Schrödinger operator

H = −D2
x + V (x) (1)

where Dx = dx − iA(x) is the covariant derivative and the x coordinate lives on a graph G
made of B one-dimensional wires connected at V vertices. Throughout this paper we will
designate the vertices with greek letters (α, β,µ, . . .). We introduce the V × V -adjacency
matrix aαβ; if the vertices α and β are linked by a bond then aαβ = 1 and aαβ = 0 otherwise.
The coordination of vertex α (number of bonds issuing from the vertex) is mα = ∑

β aαβ.
We call xαβ ∈ [0; lαβ] the coordinate on the bond (αβ) of length lαβ (note that by definition
xβα = lαβ − xαβ).

The Schrödinger operator acts on scalar functions ψ(x) living on G that are represented
by a set of B components ψ(αβ)(xαβ) satisfying appropriate boundary conditions at the vertices
[9, 10, 37]:

(i) continuity

ψ(αβi )(xαβi
= 0) = ψα for i = 1, . . . ,mα. (2)

The indice β i designates a vertex neighbour of vertex α; the wavefunction at the vertex
is ψα.
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Figure 1. A graph made of B = 15 internal bonds and V = 11 vertices connected to L = 4 external
leads.

(ii) A second condition sufficient to ensure current conservation (i.e. unitarity of the scattering
matrix) ∑

β

aαβDxαβψ(αβ)(xαβ = 0) = λαψα (3)

where λα is a real parameter. Due to the presence of the connectivity matrix aαβ, the sum
runs over all neighbouring vertices linked with vertex α. To have a better understanding
of the physical meaning of the parameter λα we remark that for a vertex of coordination
number 2, equation (3) describes a potential λαδ(xαβ) at the position of the vertex α. Note
also that the limit λα → ∞ corresponds to the Dirichlet condition ψα = 0 which means
that no current is transmitted through this vertex.

It is also possible to consider more general boundary conditions than (2 and 3) and release
the continuity condition as it was proposed in [22].

The magnetic flux along the bond is denoted by θαβ = ∫ β

α
dxA(x) = −θβα.

We also introduce the notion of arc which is an oriented bond. Each bond (αβ) is
associated with two arcs αβ and βα. Throughout this paper we label the arcs with roman
letters (i, j, . . .) and designate the reversed arc of i with a bar: ī.

To describe the potential V(αβ)(xαβ) on the bond (αβ) it will be appropriate to introduce
reflection and transmission coefficients. We call rαβ(E) and tαβ(E) the reflection and
transmission probability amplitudes associated with the transmission from vertex α to vertex
β for a plane wave of energy E. The scattering 2 × 2-matrix for the bond is(

rαβ tβα

tαβ rβα

)
. (4)

We consider a scattering problem, that is, a situation where the graph G is connected to L
external leads by which some wave is injected (see figure 1). The on-shell scattering matrix
� is an L × L matrix that relates the incoming amplitudes in the L channels to the outcoming
ones. We call Aext

α

(
resp.Bext

α

)
the incoming (resp. outcoming) amplitude on the external lead

connected at the vertex α. By definition

Bext = �Aext. (5)

The purpose of this paper is to express � by means of arc 2B × 2B-matrices and vertex
V ×V -matrices. We generalize the expressions known in the absence of potential [10, 18, 21].
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Figure 2. The amplitudes on the arcs i and ī.

3. Scattering matrix in terms of arc matrices

In this section we construct the scattering matrix by relating it to arc matrices.

3.1. Scattering by bonds

We have already explained in section 2 how to describe the scattering by the potential V (x) on
the bonds by 2 × 2 scattering matrices. We associate with each internal arc i two amplitudes
Aint

i and B int
i (see figure 2); this means that the component ψi(x) of the wave function of

energy k2 matches with Aint
i e−ikx + B int

i eikx at the node from which arc i issues. It follows that
the amplitudes at the two boundaries of the arc i are related by(

Aint
i

Aint
ī

)
=
(
ri tī
ti rī

)(
B int

i

B int
ī

)
(6)

where ī is the reversed arc. This relation may be more conveniently written in terms of a
matrix R that couples the 2B internal arcs

Aint
i =

∑
j

RijB
int
j (7)

with

Rij = riδi,j + tī δī,j (8)

where δi, j is the Kronecker symbol and indices i and j run over the labels of the 2B internal
arcs i, j ∈ {1, . . . , B, 1̄, . . . , B̄}.

If there is no potential on the bonds (V (x) = 0) we recover the R-matrix introduced in
[16]:

R0
ij = eikli δī,j . (9)

The reflection and transmission coefficients characterize the scattering by the potential
alone and if we introduce a magnetic field, the modification brought is straightforward: the
transmission amplitudes receive additional phases ti → tieiθi and the reflection amplitudes are
not affected by the magnetic field. θαβ = ∫ β

α
dx A(x) = −θβα is the magnetic flux along arc

αβ. The bond scattering matrix then reads as

Rij = riδi,j + tīe
−iθi δī,j . (10)

This matrix can also be written in a vertex notation (we identify i with αβ and j with µν)

Rαβ,µν = aαβaµν

(
rαβδαµδβν + tβαeiθβα δανδβµ

)
(11)

where the adjacency matrix elements aαβ and aµν ensure that α and β are connected by a bond,
as well as µ and ν.
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3.2. Scattering by vertices

The bond-scattering matrix only couples amplitudes Aint and Bint associated with internal arcs.
On the other hand, some vertices (L) couple internal bonds and external leads. We write the
wavefunction on the lead connected to the vertex α as (see figure 1)

ψleadα(x) = Aext
α e−ikx + Bext

α eikx (12)

(x = 0 coincides with the vertex). Since we have to introduce only one pair of amplitudes
Aext

α , Bext
α per external lead, this means that each lead is described by one arc only. Adopting

this convention implies that we are now dealing with 2B + L arcs. We group the internal and
external amplitudes in a unique vector:

A =
(
Aint

Aext

)
and B =

(
B int

Bext

)
. (13)

If we consider a given vertex α of coordination mα, it follows from (2) and (3) that the mα

incoming amplitudes Ai at the vertex are related to the outgoing amplitudes Bi by a mα × mα

unitary matrix Qα whose diagonal elements are 2
mα + iλα/k

− 1, all others being 2
mα + iλα/k

. We
call Q the (2B + L) × (2B + L)-vertex scattering matrix of the whole graph with leads [16]:

Bi =
∑
j

QijAj (14)

with

Qij = 2

mα + iλα/k
− 1 if i = j (i issues from the vertexα) (15)

Qij = 2

mα + iλα/k
if i 
= j both issuing from the vertex α (16)

Qij = 0 otherwise. (17)

We can also write the matrix elements for the internal arcs in a vertex notation:

Qαβ,µν = aαβaµνδαµ

(
2

mα + iλα/k
− δβν

)
. (18)

All the information on the topology of the graph is encoded in matrix Q.

3.3. Scattering by the full graph

We have seen that the scattering by bonds relates internal amplitudes

Aint = RB int (19)

and the scattering by vertices all amplitudes:

B = QA. (20)

We separate the Q matrix into four block matrices:

Q =
(
Qint Q̃

T

Q̃ Qext

)
(21)

where QT is the transposed matrix (Qint is a 2B × 2B-matrix, Qext is an L × L-matrix and Q̃ is
an L × 2B-matrix). In the following we will always choose to write the matrix Q according to
this structure.
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Figure 3. Scattering in a ring pierced by a magnetic flux.

Equation (20) becomes

B int = Qint Aint + Q̃
T
Aext (22)

Bext = Q̃Aint + Qext Aext. (23)

We can now eliminate the internal amplitudes from (19), (22) and (23) and relate Aext to Bext.
Therefore, we obtain the scattering matrix of the graph

� = Qext + Q̃(R† − Qint)−1Q̃
T
. (24)

We have used the unitarity of R

(R−1)ij = (R†)ij = r∗
i δi,j + t∗i e−iθi δī,j . (25)

The expression (24) generalizes the result known in the absence of potential [21].

Example. As an example we consider the scattering on the ring of perimeter l pierced by a
flux θ (figure 3) without potential, a simple geometry studied in many studies like [26, 36, 38].
This graph possesses one internal bond (arcs 1 and 1̄); the external lead is associated with an
arc called 1e. The bond-scattering matrix (10) and (11) is

R =
(

0 eikl−iθ

eikl+iθ 0

)
(26)

and the vertex-scattering matrix (15)–(18), expressed in a basis of arcs {1, 1̄, 1e} (see figure 3)
for λα = 0, reads as

Q =

−1/3 2/3 2/3

2/3 −1/3 2/3
2/3 2/3 −1/3


 . (27)

Applying (24) we find

� = −3eikl − 4 cos θ + e−ikl

3e−ikl − 4 cos θ + eikl
. (28)

With one lead, the scattering matrix is given by a unique phase �(E) = eiδ(E ) with

cot
δ

2
= sin kl

2(cos θ − cos kl)
. (29)

We recover a result obtained by relating the scattering matrix to the ratio of spectral
determinants in the one-channel case [16].

Remark: multichannel wires. We remark that the formulation of the scattering in terms
of arc matrices can be generalized for multichannel wires: the matrix elements Qij and Rij

would then become submatrices coupling channels.
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3.4. Multiple-scattering expansion

It is sometimes interesting to expand the quantities of interest in terms of contributions of
paths in the graph (we call path an ordered set of arcs). Since the matrices Q and R contain
the scattering amplitudes on vertices and bonds, respectively, it is obvious that the expansion
of (24) expresses the contributions of paths to the transmission amplitudes from one lead to
another:

� = Qext + Q̃RQ̃
T

+ Q̃RQintRQ̃
T

+ · · · + Q̃R(QintR)nQ̃
T

+ · · · . (30)

The first term is associated with transmission from leads without entering the graph. The term
Q̃RQ̃

T
corresponds to paths that contain only one bond of the graph. More generally, the

element (Q̃R(QintR)nQ̃
T
)ij is the sum of all amplitudes associated with the paths made of n + 1

internal arcs and going from lead j to lead i.

4. Scattering matrix in terms of vertex matrices

The approach presented in the previous section has the advantage of considering only scattering
matrices for bonds and vertices but presents the disagreement to manipulate rather big matrices
(2B × 2B). In this section we follow a different methodology by constructing the stationary
scattering states in the graph which leads to dealing with vertex matrices (V × V ) that are
usually smaller.

For convenience, we label the vertices connected to leads with the L-first indices:
α = 1, . . . , L; however, the final result will be completely independent of the way the
basis of vertices is organized.

We introduce the L × V matrix W [18] containing the information about the way the
graph is connected: Wαβ = δαβ with α ∈ {1, . . . , L} and β ∈ {1, . . . , V },

W =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 · · · 0 1 0 · · · 0


 . (31)

We now turn to the construction of the stationary scattering states ψ(α)(x) of energy k 2

which describes a plane wave entering the graph from the lead connected at vertex α and
being scattered by the graph into all leads. We consider the case without a magnetic field
since the addition of a magnetic field is straightforward by adding the appropriate phases in
the transmission coefficients of the bonds.

On the lead connected to vertex µ, the wave function is

ψ
(α)
leadµ(x) = δµαe−ikx + �µαeikx (32)

with x ∈ [0; +∞[.
To construct a wavefunction on the internal bond (µβ) of the graph, it is convenient

to introduce two linearly independent solutions fµβ(xµβ) and fβµ(xµβ) of the differential
equation (

−d2
xµβ

+ V(µβ)(xµβ) + γ
)
f (xµβ) = 0 (33)

for x ∈ [0, lµβ], satisfying the following boundary conditions at the edges of the interval:{
fµβ(µ) = 1
fµβ(β) = 0

and

{
fβµ(µ) = 0
fβµ(β) = 1

. (34)
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We follow here the construction of the spectral determinant for the Schrödinger operator in
[31]. To lighten the expressions we have introduced the obvious notation f (µ) ≡ f (xµβ = 0)
and f (β) ≡ f (xµβ = lµβ). The spectral parameter is

γ = −k2 − i0+. (35)

For example, if V(µβ)(x) = 0 the two functions are fµβ(xµβ) = sh
√
γ (lµβ − xµβ )

sh
√
γ lµβ

and

fβµ(xµβ) = sh
√
γ xµβ

sh
√
γ lµβ

.

We call ψ(α)
µ the wavefunction at the vertex µ when the plane wave is injected at vertexα.

The solution of the Schrödinger equation (33) on the bond (µβ)

ψ
(α)

(µβ)(xµβ) = ψ(α)
µ fµβ(xµβ) + ψ

(α)
β fβµ(xµβ) (36)

already satisfies the continuity condition (2).

If we impose condition (2) for the wave function on the lead
(
ψ

(α)
leadµ(0) = ψ(α)

µ

)
we get

δµα + �µα = ψ(α)
µ for µ = 1, . . . , L. (37)

The solution ψ(α)(x) must also satisfy condition (3), that is

∑
β

aµβ

dψ(α)

(µβ)

dxµβ

(µ) + (WTW)µµ

dψ(α)

leadµ

dx
(µ) = λµψ

(α)
µ for µ = 1, . . . , V . (38)

The (WTW)µµ ensures that this contribution to current from leads vanishes if µ is an internal
vertex. This equation can be rewritten as

(WTW)µµ(δµα − �µα) =
∑
β

Mµβψ
(α)
β for µ = 1, . . . , V (39)

where M is the matrix appearing in the expression of the spectral determinant1 [31]

Mµβ(γ ) = 1√
γ

(
δµβ

[
λµ −

∑
ν

aµν

dfµν

dxµν

(µ)

]
+ aµβ

dfµβ

dxµβ

(β)

)
. (40)

If we consider ψ(α)
µ as the matrix elements (µ,α) of a V ×L-matrix & , (37) and (39) can

be rewritten in a matrix form

1 + � = W& (41)

WT(1 − �) = M&. (42)

We obtain the scattering matrix by eliminating & from (41) and (42) (with the help of the
identity recalled in appendix C). Finally we get

� = −1 + 2W(M + WTW)−1 WT. (43)

The last step is to relate the matrix M to the reflection and transmission coefficients of the
bonds. For this purpose we note that we could have chosen a different basis of solutions of
equation (33) to construct the stationary state (36) on the bond. In particular, we could have
chosen the right φβµ(x) and left φµβ(x) stationary scattering states solely associated with the

1 We have used the fact that the Wronskian is equal to

W[fµβ, fβµ] = fµβ

dfβµ

dxµβ
− dfµβ

dxµβ
fβµ = dfβµ

dxµβ
(µ) = − dfµβ

dxµβ
(β).



Scattering theory on graphs 10315

potential V(µβ)(x) of the bond. If we think of the bond potential Vβµ(x) with support [0, lµβ]
embedded in an infinite line (R), these states would be written outside the interval as

φµβ(x) = eikx + rµβe−ikx for x � 0

= tµβeik(x−lµβ ) for x � lµβ
(44)

φβµ(x) = tβµe−ikx for x � 0

= e−ik(x−lµβ ) + rβµeik(x−lµβ ) for x � lµβ.

It is easy to see that the functions fµβ(x) are related to those stationary scattering states by

fµβ(xµβ) = (1 + rβµ)φµβ(xµβ) − tµβφβµ(xµβ)

(1 + rµβ)(1 + rβµ) − tµβtβµ
. (45)

Then
dfµβ

dxµβ

(µ) = ik
(1 − rµβ)(1 + rβµ) + tµβtβµ

(1 + rµβ)(1 + rβµ) − tµβtβµ
(46)

and
dfµβ

dxµβ

(β) = ik
2tµβ

(1 + rµβ)(1 + rβµ) − tµβtβµ
. (47)

We can now express the matrix M for γ = −k2 − i0+ in terms of bond reflections and
transmissions as

Mαβ = δαβ

(
i
λα

k
+
∑
µ

aαµ

(1 − rαµ)(1 + rµα) + tαµtµα

(1 + rαµ)(1 + rµα) − tαµtµα

)
− aαβ

2tαβ
(1 + rαβ)(1 + rβα) − tαβ tβα

.

(48)

This equation with (43) generalizes the result known in the absence of the potential [10, 18].
In appendix A we rewrite the matrix M with real parameters replacing the complex reflection
and transmission coefficients of the bonds, and in appendix B we discuss how it is modified if
the graph contains loops that we do not want to describe with several vertices.

We repeat that the addition of a magnetic field implies the substitution tαβ → tαβeiθαβ , the
reflections being unchanged.

Note that if V (x) = 0 we have rαβ = 0 and tαβ = eiklαβ+iθαβ and we recover the well-known
matrix [7, 8, 37] that appears in the search of the eigenvalues of the closed graph (if λα = 0):

M0
αβ = i δαβ

∑
µ

aαµ cot klαµ − aαβ

ieiθαβ

sin klαβ
. (49)

Example. We consider again the case of the ring (figure 3); this example has been studied in
[10]. The graph can be described with only one vertex to which one loop is attached. In this
case the matrix M reduces to a scalar (see [15, 16] and appendix B):

M = 2i

(
cot kl − cos θ

sin kl

)
. (50)

The matrix W reduces to 1 and we recover from (43) the result (28) in a straightforward
manner:

� = i sin kl + 2(cos kl − cos θ)

i sin kl − 2(cos kl − cos θ)
. (51)



10316 C Texier and G Montambaux

-1

0

m

0 m

1

.
.
.

2

Figure 4. The box on the arc 0 represents a potential characterized by the scattering matrix (53).
The arc m can be decoupled from the other external arcs by tuning the transmission through the
bond (0).

Remark: spectral determinant. Note that the spectral determinant S(γ ) = ∏
n(En + γ )

characterizing the spectrum of the isolated graph can also be expressed in terms of the reflection
and transmission coefficients by using equations (46)–(48) with the result of Desbois [31]:

S(γ ) = γ V/2
∏
(αβ)

(
dfβα

dxαβ

(α)

)−1

detM(γ ). (52)

5. Tuning the coupling of the graph to the leads

In this section we consider the situation where a graph G can be decoupled from the leads at
which it is connected by tuning some parameters. One way to proceed is to add a bond with
a tunable transmission between each lead and the corresponding vertex to which it is plugged
in (figure 5); this can be described with the formalism we have presented above in the two
previous sections but requires consideration of a new graph G̃ with V + L vertices and B + L
bonds (if G has V vertices, B bonds and L leads). The purpose of this section is to demonstrate
that the problem can be reduced, in the sense that we can keep considering the original graph G
with V vertices and B bonds, provided some modifications of the above formalism are made:
(i) in the ‘arc matrices’ formulation we have to modify the vertex-scattering matrix for vertices
connected to leads. (ii) In the ‘vertex matrices’ formulation, formulae (43) and (48) still hold
using the matrix M of G if we modify the matrix W in a way that appears to be very natural.

5.1. A vertex-scattering matrix including arbitrary coupling of one arc

We construct the scattering matrix of the graph of figure 4 made of one bond (two arcs 0 and
0̄). To describe the scattering on the bond (0) we choose a simple bond-scattering matrix (10)

R =
(

cos ξ sin ξ

sin ξ − cos ξ

)
(53)

that allows tuning of the transmission probability through the bond T = sin2 ξ . At one side
of the bond, m − 1 arcs are connected and there is only one at the other side. The scattering
matrix we obtain is the scattering matrix for a vertex with m arcs among which one can be
disconnected by tuning the parameter ξ , all other arcs being equivalent.
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On the basis of arcs {0, 0̄, 1, 2, . . . ,m}, the matrix Q (15)–(17) is

Q =




2
m

− 1 0 2
m

2
m

· · · 2
m

0
0 0 0 0 · · · 0 1
2
m

0 2
m

− 1 2
m

· · · 2
m

0
2
m

0 2
m

2
m

− 1 · · · 2
m

0
...

...
...

...
. . .

...
...

2
m

0 2
m

2
m

· · · 2
m

− 1 0
0 1 0 0 · · · 0 0




. (54)

The matrix has been written with the parameter λ = 0 to lighten the expressions. This
parameter is re-introduced by performing the following substitution in a straightforward
manner:

m → m + i
λ

k
. (55)

We now use equation (24) to express the m × m scattering matrix of the graph

� =
(

ρ τT

τ ρ′
)

(56)

where ρ is a (m − 1) × (m − 1) matrix, τ a line vector of dimension m − 1 and ρ ′ a number:

ρij = 2

m

1 + cos ξ

1 +
(
1 − 2

m

)
cos ξ

− δi,j (57)

τi = 2

m

sin ξ

1 +
(
1 − 2

m

)
cos ξ

(58)

ρ ′ = − 1 − 2
m

+ cos ξ

1 +
(
1 − 2

m

)
cos ξ

. (59)

The indices i, j run over the first m − 1 equivalent arcs.
A more convenient parametrization is obtained by relating ξ ∈] − π, π] to a parameter

w ∈ R:

w = tan(ξ/2). (60)

We emphasize that the parameter w characterizes only the scattering through the bond (0)
(figure 4). With this new parameter the scattering matrix takes the simpler form

ρij = 2

m.
− δi,j (61)

τi = 2w

m.
(62)

ρ ′ = 2w2

m.
− 1 (63)

where we have re-introduced the parameter λ in

m. = m − 1 + w2 + i
λ

k
. (64)

m. plays the role of an effective coordination number. The expressions (61)–(63) generalize the
vertex-scattering matrix introduced in [5] to the case of tunable couplings to the leads. These
transmission coefficients were used to calculate the weights of the periodic orbits involved in
the trace formula [5, 6] and later in [17, 18, 21].

Let us examine several limiting cases to have a better understanding of the role of
parameter w:
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w2

w1

wL
wL-1

3w
.

..

Figure 5. Graph with arbitrary coupling to leads. The couplings wα’s are represented by boxes;
we recall that they are defined by wα = tan(ξα/2) where the transmission through the box is
Tα = sin2 ξα . The dashed area schematizes the internal structure of the graph.

• If w = 1, the matrix � is the symmetric m × m-scattering matrix for a vertex of
coordinence m given by (15)–(18). In this case the transmission of the bond (0) is T = 1.

• If w = 0, the last arc is decoupled from the others and no current is transmitted to this arc.
The scattering between m − 1 other arcs, described by the (m − 1) × (m − 1) matrix ρ,
is given by the usual scattering matrix (15)–(18) for a coordinence m − 1.

• If w = √
m − 1 and λ = 0, the scattering matrix coincides with the one introduced

by Shapiro [23] up to an inessential change of the sign of ρ
(
this case corresponds to

cos ξ = −1 + 2
m

, i.e. a transmission T = 4(m−1)
m2

)
.

• If w = ±∞, all the arcs are decoupled: ρij = −δi,j , τi = 0 and ρ ′ = 1. From the point
of view of the m − 1 first arcs, this limit is equivalent to λ = ±∞.

Here we have given a generalization of the scattering matrix proposed in [25] for the case
of coordination m = 3 and λ = 0. A generalization to any m of the parametrization of Büttiker
et al is

� =




b b · · · √
ε

b b · · · √
ε

...
...

. . .
...√

ε
√
ε · · · c


− 1 (65)

where b = 1
m−1

(
1 +

√
1 − (m − 1)ε

)
and c = 2 − (m − 1)b = 1 − √

1 − (m − 1)ε. The
relation with our parametrization with w is given by

√
ε = 2w

m.

(
then b = 2

m.

)
, valid for λ =

0. Note, however, that the parametrization with ε ∈ [0, 1/(m − 1)] does not allow covering
of the full range of the parameter w ∈ R, but only the interval w ∈ [0,√m − 1

]
.

5.2. Scattering matrix of the graph with arbitrary coupling to the leads

We now consider the graph G of figure 5. Each external lead is connected to vertices
α ∈ {1, 2, . . . , L} of the graph through a barrier which is described by a parameter wα ∈ R;
we call those vertices ‘external vertices’. The scattering matrix of the full graph can be
constructed with (24). Let us discuss the structure of the vertex-scattering matrix. Q couples
arcs issuing from the same vertex; to help the discussion, let us imagine for a moment that
the basis of the arcs is organized so that the arcs issuing from the same vertex are grouped.
The matrix Q is a block-diagonal matrix in such a basis. As above, we call Qα the mα × mα

block coupling the arcs issuing from the vertex α. The blocks related to internal vertices
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α ∈ {L + 1, . . . , V } are unchanged, still given by (15)–(17), whereas the blocks coupling arcs
issuing from external vertices α ∈ {1, . . . , L} are now given by (56) and (61)–(63)

Qα = 2

m.
α




1 1 · · · 1 wα

1 1 · · · 1 wα

...
...

. . .
...

...

1 1 · · · 1 wα

wα wα · · · wα w2
α


− 1 (66)

where m.
α ≡ mα − 1 + w2

α + iλα/k. The introduction of the couplings in this way does not
increase the size of the matrices we have to deal with by using (24).

Now we would like to generalize formula (43) without increasing the difficulty of the
calculation of �. The construction of the scattering matrix � using vertex matrices uses
the continuity of the wave function as a basic ingredient at the vertices. If we now describe the
scattering at the external vertices with (66), this means that the wave function is not continuous
anymore at those vertices due to their internal structure (but still continuous at vertices inside
the graph). For a moment we focus on the vertex α with mα arcs among which mα − 1 are
internal arcs of the graph, the remaining arc being a lead. We call A1, A2, . . . , Amα−1 the
mα − 1 incoming amplitudes from the graph and Amα

the incoming amplitude from the lead.
Let us examine the value of the wavefunction on the arcs i: ψi(x) = Aie−ikx + Bieikx . We
have Bi = ∑mα

j=1(Qα)ijAj ; on the arc i, if x → 0 the wavefunction goes to ψi(0) = Ai + Bi .
It follows from expression (66) that we still have the continuity for the wavefunction on the
arcs inside the graph

ψ1(0) = · · · = ψmα−1(0) = 2

m.
α

A +
2 wα

m.
α

A′ (67)

and the wavefunction at the extremity of the lead is

ψmα
(0) = 2 wα

m.
α

A +
2 w2

α

m.
α

A′ (68)

whereA = A1 +· · ·+Amα−1 andA′ = Amα
. It is straightforward to see that the matrix involved

in the two equations has an eigenvalue zero associated with the eigenvector (wα,−1). It follows
that

ψ1(0) = · · · = ψmα−1(0) = 1

wα

ψmα
(0). (69)

This equation replaces the continuity condition for the vertices coupled to the leads.
We now consider the full graph and follow the same lines as in the previous section to

construct the scattering matrix by constructing the stationary scattering state ψ(α)(x) of energy
E = k2 corresponding to a plane wave injected from the lead α. The wavefunction on the
lead connected to the vertex µ is (32) and (36) on the internal bonds. By virtue of (69) the
continuity condition (37) is now replaced by

δµα + �µα = wµψ
(α)
µ for µ = 1, . . . , L. (70)

The current conservation reads as

ψ(α)
µ

∗∑
β

aµβ dxψ
(α)

(µβ)(µ) + ψ
(α)∗
leadµ(µ) dxψ

(α)
leadµ(µ) = λµ

∣∣ψ(α)
µ

∣∣2 for µ = 1, . . . , L

(71)∑
β

aµβ dxψ
(α)

(µβ)(µ) = λµψ
(α)
µ for µ = L + 1, . . . , V (72)
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which is now rewritten as

wµ(δµα − �µα) =
∑
β

Mµβψ
(α)
β for µ = 1, . . . , L (73)

0 =
∑
β

Mµβψ
(α)
β for µ = L + 1, . . . , V . (74)

Equations (70), (73) and (74) have the same form as (41) and (42) provided that the L×V -
matrix W is now defined as

Wαβ = wα δαβ (75)

with wα ∈ R. The introduction of tunable couplings2 between the graph and the leads in
(43) and (48) is thus a simple modification of matrix W with (75). Looking at equation (43),
this modification seems very natural. However, we stress that we have given in the above
paragraph a precise physical meaning to the parameters wα’s by relating them to the scattering
matrix (53) and equation (60).

5.3. Resonances

It is easy to see from the above formalism how the spectrum of resonances of the graph
connected to external leads is related to the eigenvalues spectrum of the same isolated graph.
The spectrum of resonances is given by the poles of the scattering matrix, the real part of the
pole being the energy of the resonance and the imaginary part its width.

(i) In the vertex matrix formulation, the poles of � are the complex zeros of det(M +WTW).
The matrix M encodes all the information on the isolated graph (topology of the graph
and potential on the bonds) whereas the information on the way the graph is coupled to
the external leads is contained in W . If we turn off the couplings wα → 0, it is clear that
we recover the energies of the isolated graph, solutions3 of detM(−k2) = 0 (see [31] and
remark of section 4).

(ii) In the arc matrix formulation, the poles are the zeros of det(1 − RQint). Now the
information on the topology of the graph and the couplings is mixed in Qint whereas R
encodes the information on the potential. Again, if the couplings are switched off, the
matrix Qint is equal to the matrix Q of the isolated graph whose spectrum is given by
det(1 − RQ) = 0.

Example 1. We compute the scattering matrix of a ring connected to one lead (figure 6). This
is the situation considered in [26]. The result is obtained by replacing (27) by (66) in the
calculation we have already made. A more direct way is to use (43) and (75), � = −1+2 w2

M+w2 ,
the matrix M being given by (50).

2 The question of tunable couplings has also been studied in [36]. It is interesting to point out the relation
between the coupling parameter w and the parameters α, α̃ and γ introduced in [36] where the continuity
equation and ‘current conservation’ are written for the external node with one lead and M internal bonds:
ψlead(0) = 1

α
ψ ′

lead(0) + γ
∑M

i=1 ψ ′
i (0) and ψ1(0) = · · · = ψM(0) = γ ∗ψ ′

lead(0) + 1
α̃

∑M
i=1 ψ ′

i (0). Comparing these
equations with (69) and (71) we immediatly see that α = λ

w2 , α̃ = λ and γ = w
λ

.
3 Note that in certain cases, the equation det M(−k2) = 0 is not sufficient to construct all the eigenstates of the
graph. However, the states missed by this equation are found by solving det(1 − RQ) = 0 for the isolated graph. Such
a situation occurs, for example, for the complete graph KV (a graph with V vertices all connected by bonds of same
length) considered in [16].
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Figure 6. Ring with arbitrary coupling w to the lead.
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Figure 7. Left: dδ
dk for the ring of figure 6 for different values of the coupling w. Dotted lines:

w = 1, dashed lines: w = 0.5 and solid lines: w = 0.05. The flux is θ = 5π/7 and the length
l = 1. Right: persistent current I (kF , θ) = ∫ kF

0 dk 2k j (k2, θ) for w = 0.5 (solid line), w = 1
(dashed lines) and w = 5 (dotted lines). We have chosen kFl =3π .

If we consider the case of a ring with a potential on the bond like in figure 6, M is given by
M = 2i cos6−√

T cos θ
sin6−√

1−T cosϕ
, as explained in appendix B. We obtain � = eiδ with

cot
δ

2
= w2 sin 6 − √

1 − T cosϕ

2
(√

T cos θ − cos6
) . (76)

For w = 0, the ring is disconnected from the arm and the phase shift is constant (δ = π). We
now consider the case without a potential on the ring: T = 1,6 = kl.

cot
δ

2
= w2 sin kl

2(cos θ − cos kl)
. (77)

If w = 1 we recover the result (29). The effect of the parameter w can clearly be seen if we
compute dδ

dk (see figure 7):

dδ

dk
= lw2 1 − cos θ cos kl

(cos θ − cos kl)2 + 1
4w

4 sin2 kl
. (78)

We now discuss the two ways to decouple the lead from the ring.

• In the limit w → 0, the width of the resonance peaks is 8k = w2

2l , the peaks being centred
on the eigen-energies of the isolated ring of perimeter l: k±

n l = ±θ + 2nπ , with n ∈ N

for the sign + and n ∈ N
∗ for the sign −. We have dδ

dk � 2π 8k/π

(k − k±
n )

2
+ 8k2

if k ∼ k±
n .

• In the limit w → ∞ the three arcs decouple, the ring is open and dδ
dk presents peaks of

width 8κ = 2
w2l

(1 − (−1)m cos θ) centred on the eigen-energies of the isolated line of
length l: κml = mπ , for m ∈ N.
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Figure 8. Ring pierced by a magnetic flux θ with potentials on the bonds.

The physical difference between the two limits may also be seen in the persistent current
[38] (see also [39]): j (k2, θ) = 1

2π
∂
∂θ
δ(k2, θ) is the current density, i.e. j (E, θ ) dE is the

current of the states in the energy range [E, E + dE[. We get

j (k2, θ) = − 1

2πl

sin θ sin kl

1 − cos θ cos kl

dδ

dk
. (79)

• If w → 0, the current density presents sharp peaks of alternate signs at the position of the
resonances: j (k2, θ) � ∓ 1

2πl
dδ
dk for k ∼ k±

n . We define the contribution of the peak at k±
n

as I±
n = ∫ k±

n +δK
k±
n −δK

dk 2k j (k2, θ) with δK being a large quantity compared to the resonance

width but small compared to the distance between peaks: w2 � δKl � min(θ, π − θ).
We immediatly see that I±

n � 4π
l2

(∓n − θ
2π

)
; we have recovered the persistent current of

the isolated ring I±
n = − ∂

∂θ

(
k±
n

)2
.

• In the limit w → ∞, the current density behaves like j (k2, θ) ∝ (k − κm)
dδ
dk in the

neighbourhood of the resonance k ∼ κm. It follows that the contributions of the resonance
peaks vanish (due to the opening of the ring): Im = ∫ κm+δK

κm−δK
dk 2k j (k2, θ) � 0 (the right

part of figure 7 indeed shows that the persistent current decreases as w increases).

Example 2. We consider a ring pierced by a flux θ and connected to two leads (see figure 8).
This arrangement has been considered in several works to study the Aharonov–Bohm
oscillations of the conductance of a normal metal ring; the authors of [24] considered a
particular coupling of the leads whereas Büttiker et al [25] examined more general couplings.

The ring is made of two arcs a and b. We use the parameters of appendix A to write the
matrix M. Using (89) matrix M is given by

M11 = i
λ1

k
+ i

cos6a +
√

1 − Ta sin ϕa

sin 6a − √
1 − Ta cosϕa

+ i
cos6b +

√
1 − Tb sin ϕb

sin 6b − √
1 − Tb cosϕb

(80)

M21(θ) = − i
√
Ta eiθ/2

sin 6a − √
1 − Ta cosϕa

− i
√
Tb e−iθ/2

sin 6b − √
1 − Tb cosϕb

(81)

M12(θ) = M21(−θ) (82)

M22 = i
λ2

k
+ i

cos6a − √
1 − Ta sin ϕa

sin 6a − √
1 − Ta cosϕa

+ i
cos6b − √

1 − Tb sin ϕb

sin 6b − √
1 − Tb cosϕb

. (83)

When several bonds link the two vertices α and β, we have to sum the contributions of each
bond in Mαα and Mαβ (see [15] and appendix C of [16]). Since the two vertices are connected
to leads, matrix W is the 2 × 2 diagonal matrix: W = diag(w1, w2). We can get the scattering
matrix from (43) as

� = −1 +
2

det(M + W 2)

(
w2

1M22 + w2
1w

2
2 −w1w2M12

−w1w2M21 w2
2M11 + w2

1w
2
2

)
. (84)
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Now we concentrate on the case of perfect transmissions through the bonds Ta,b = 1 and
6a,b = kla,b, with λ1,2 = 0. We have

det(M + W 2) = −2(cos kl − cos θ)

sin kla sin klb
+ i
(
w2

1 + w2
2

) sin kl

sin kla sin klb
+ w2

1w
2
2 (85)

where l = la + lb is the perimeter of the ring. If we consider the limit of weak coupling
w1,2 → 0 we can expand the scattering matrix in the neighbourhood of the eigen-energies of
the ring. We obtain the well-known Breit–Wigner form

�αβ �
k∼k±

n

−δαβ +
i
√
8kα8kβ eiχαβ

k − k±
n + i

2 (8k1 + 8k2)
(86)

where 8k1,2 = w2
1,2

l
, χ11 = χ22 = 0 and χ12 = −χ21 = nπ ± 1

2k
±
n (la − lb). Note that a

detailed analysis of the resonance structure of the transmission probability through the ring
has already been done in [25].

6. Summary

We have given systematic procedures to construct the scattering matrix of graphs made of
one-dimensional wires on which lives a potential, and connected to external leads.

In a first approach we used as basic ingredients a scattering matrix (10) describing
scattering by the potentials on the bonds and a scattering matrix (15)–(17) providing
information on the scattering by vertices and coupling to the external leads. This approach
is quite natural in the sense that we combine the scattering matrices of parts of the system
to construct the whole scattering matrix (24); however, it can become cumbersome since we
have to deal with rather big matrices.

One way to reduce the problem is to reformulate it in terms of vertex matrices, which is
possible if the scattering at vertices describes wavefunctions continuous at the vertices, which
allows dealing with vertex variables instead of arc variables.

We have described an efficient way to introduce some tunable couplings between the leads
and the graph (75), which permits to go continuously from a connected graph to an isolate
graph.

We have generalized the results known in the absence of the potential [10, 18, 21] by
adding scattering on bonds and allowing to tune the couplings to the external leads.
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Appendix A. Reformulating the matrix M

Here we would like to use some relations between the reflection and transmission coefficients
on a bond to rewrite the result (48) in terms of parameters whose physical meanings are
more clear. In the core of the paper we have considered that the reflection and transmission
coefficients describe the effect of the scalar potential V (x) only. In this appendix we adopt
another point of view and consider that these coefficients describe the effect of both the scalar
potential V (x) and the vector potential A(x).
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a
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a

Figure 9. A loop at the vertex α.

Due to the unitarity of the scattering matrix for a given bond (αβ), it follows that the four
complex parameters describing the left (rαβ and tαβ) and right (rβα and tβα) scattering can be
parametrized in terms of four real parameters:(

rαβ tβα

tαβ rβα

)
= ei6αβ

(
ieiϕαβ

√
1 − Tαβ e−iχαβ

√
Tαβ

eiχαβ
√
Tαβ ie−iϕαβ

√
1 − Tαβ

)
. (87)

6αβ is a global phase. Tαβ ∈ [0, 1] is the transmission probability through the barrier. In
the absence of a magnetic field, we know that the scattering matrix is symmetric (it is well
known that the symmetry of the scattering matrix in the presence of a magnetic field B is
�(−B) = �(B)T); it follows that we can identify the asymmetric part of the phase of the
transmission coefficients with the magnetic flux

χαβ = θαβ. (88)

The last phase ϕαβ is related to the asymmetry of the potential (for V(αβ)(x) = V(αβ)(lαβ − x)

we have rαβ = rβα , i.e. ϕαβ = 0 or π).
Due to these definitions we have the following obvious relations: Tαβ = Tβα,6αβ =

6βα, ϕαβ = −ϕβα and recall that θαβ = −θβα.
We can now rewrite (48) in terms of these parameters as

Mαβ = i δαβ

(
λα

k
+
∑
µ

aαµ

cos6αµ +
√

1 − Tαµ sin ϕαµ

sin6αµ −√
1 − Tαµ cosϕαµ

)

− i aαβ

√
Tαβ eiθαβ

sin 6αβ −√
1 − Tαβ cosϕαβ

. (89)

As a by-product, it shows that the matrix M is anti-Hermitian: M† = −M . To end this
appendix, we note that if the potential on the bond vanishes V(αβ)(x) = 0, then Tαβ = 1 and
6αβ = klαβ .

Appendix B. Matrix M for a graph with loops

We explain in this appendix how the matrix M is modified when we want to describe with
the minimum number of vertices a graph possessing loops. We consider a graph with a loop
threatened by a flux θa at the vertex α (see figure 9). The potential on arc a of the loop is
described by four reflection and transmission coefficients: ra , ta for the arc a and rā , tā for the
reversed arc ā.

If we follow the lines of section 4 we can see that only the diagonal part of the matrix M
(48) is affected by the loops

Mαβ → Mαβ + δαβ M loop
αα (90)
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where the contribution of the loop is

M loop
αα = (1 − ra)(1 + rā) + tatā

(1 + ra)(1 + rā) − tatā
− 2 ta

(1 + ra)(1 + rā) − tatā
+

(1 + ra)(1 − rā) + tatā

(1 + ra)(1 + rā) − tatā

− 2 tā

(1 + ra)(1 + rā) − tatā
. (91)

This result is rather natural: Mαα receives two contributions from each arc a and ā of the
kind present in the diagonal elements of (48) and since the arc comes back to the same vertex
we also get two contributions of the kind present in the off-diagonal elements of (48). After
simplification we obtain

M loop
αα = 2

1 − rarā + tatā − ta − tā

(1 + ra)(1 + rā) − tatā
. (92)

We can also express this contribution with the real parameters introduced in appendix A
to describe the scattering by the arc a:6a = 6ā, Ta = Tā, ϕa = −ϕā and θa = −θā. We
obtain

M loop
αα = 2i

cos6a − √
Ta cos θa

sin 6a − √
1 − Ta cosϕa

. (93)

Appendix C. Inversion of block matrices

We recall in this appendix a result that can be found in standard textbooks. Consider the square
matrix

M =
(

A B

C D

)
(94)

where A and D are square matrices of arbitrary dimensions. Then

M−1 =
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
(95)

=
(

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
. (96)
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